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In the field of Data Mining, the estimation of the quality of the learned models is a key step
in order to select the most appropriate tool for the problem to be solved. Traditionally, a k-
fold validation technique has been carried out so that there is a certain degree of indepen-
dency among the results for the different partitions. In this way, the highest average per-
formance will be obtained by the most robust approach. However, applying a ‘‘random’’
division of the instances over the folds may result in a problem known as dataset shift,
which consists in having a different data distribution between the training and test folds.

In classification with imbalanced datasets, in which the number of instances of one class
is much lower than the other class, this problem is more severe. The misclassification of
minority class instances due to an incorrect learning of the real boundaries caused by a
not well fitted data distribution, truly affects the measures of performance in this scenario.
Regarding this fact, we propose the use of a specific validation technique for the partition-
ing of the data, known as ‘‘Distribution optimally balanced stratified cross-validation’’ to
avoid this harmful situation in the presence of imbalance. This methodology makes the
decision of placing close-by samples on different folds, so that each partition will end up
with enough representatives of every region.

We have selected a wide number of imbalanced datasets from KEEL dataset repository
for our study, using several learning techniques from different paradigms, thus making
the conclusions extracted to be independent of the underlying classifier. The analysis of
the results has been carried out by means of the proper statistical study, which shows
the goodness of this approach for dealing with imbalanced data.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Standard learning algorithms are designed under the premise of a balanced class distribution. When dealing with skewed
class distributions, the classification problem becomes more difficult, specifically for correctly identifying the minority con-
cepts within the data [11]. This issue is known as the class imbalance problem [21,38], in which there is an under-repre-
sented class (positive) and a majority class (negative). This problem is present in many real-world classification tasks and
has been considered as a challenge within the Data Mining community [48].
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In order to validate the performance of a classifier, both in standard and imbalanced classification, stratified cross-vali-
dation (SCV) is the most commonly employed method in the literature. It places an equal number of samples of each class
on each partition to maintain class distributions similar in all partitions [9]. However, when this process is carried out in a
random way, it may introduce a different data distribution between the training and test partitions, thus leading to inaccu-
rate conclusions when learning a model from the training data. This issue is known as dataset shift [8], or more specifically
covariate shift [30].

In the presence of imbalance, this problem is even more critic according to the metrics of performance applied in this
scenario. Since misclassifications for the positive class instances severely hinder the average precision, we must try to avoid
those errors in test which are due to a ‘‘random clustering’’ of the classes, i.e. generating outliers.

A more suitable validation technique needs to be employed in order to avoid introducing dataset shift issues artificially. In
this paper, we suggest the use of a novel methodology called ‘‘Distribution optimally balanced SCV’’ (DOB–SCV) [31] when
dealing with imbalanced datasets. This method attempts to minimize covariate shift by keeping data distribution as similar
as possible between training and test folds by maximizing diversity on each fold and trying to keep all folds as resembling as
possible to each other. The mechanism of this approach consists in selecting the k closest neighbours for a given instance and
place them in different folds (with k being the number of total partitions), so that the data distribution between the training
and test partitions remains as close as possible.

We must point out that neither SCV nor DOB–SCV can undoubtedly estimate the true classification error of a given model.
In particular, there are several factors which may affect the output for unseen samples, and make some problems more dif-
ficult than others. Among others, we may stress uneven class distribution (as studied in this paper), the dimensionality of the
problem and its relationship with the overlapping between the classes, and the presence of noise and/or outliers. However,
we suggest that, by making the training and test partitions more similar between them, the use of DOB–SCV can guarantee a
better average validation of the results. As pointed out previously, in this way we may avoid those classification errors which
are due to dataset shift, especially those regarded to the minority class instances.

In order to evaluate the goodness and validity of the use of this new partitioning mechanism for imbalanced datasets, we
develop a thorough empirical study by setting up an experimental framework which includes a set of sixty-six real-world
problems from the KEEL dataset repository [3,4] (http://www.keel.es/dataset.php). We measure the performance of the clas-
sifiers based on its Area Under the Curve (AUC) metric [23] as suggested in imbalanced domains. Additionally, we study the
significance of the results by the proper statistical tests as suggested in the literature [17,20]. Finally, we check the robust-
ness of the DOB–SCV strategy using several well-known classifiers from different Machine Learning paradigms: decision
trees [34], fuzzy rule based classification systems (FRBCS) [24], instance-based learning [1], and Support Vector Machines
(SVMs) [12,15].

This study provides three significant contributions to the research community on classification with imbalanced data,
namely:

1. We establish the motivation for the use of a new validation technique for avoiding dataset shift, which highly affects the
performance in this scenario.

2. The goodness of this novel methodology is confirmed by means of a thorough experimental analysis. In this study, several
algorithms from different paradigms were selected, showing better average performance estimates when using DOB–
SCV.

3. Finally, we have concluded that the optimistic/pessimistic estimation of the performance also depends on the problem to
be classified. In this way, the intrinsic data characteristics may have some degree of influence on the final results obtained
by the classifier.

In order to carry out the study, this manuscript is organized as follows. First, Section 2 introduces the problem of imbal-
anced data. Next, Section 3 contains the main concepts that are developed in this work, i.e. the basis on validation techniques
and the problem of covariate/dataset shift. Then, the experimental framework is presented in Section 4, whereas all the anal-
ysis of the results is shown along Section 5. Finally, Section 6 summarises and concludes the work.
2. Imbalanced datasets in classification

In this section, we will first introduce the problem of imbalanced datasets, describing its features and why is so difficult to
learn in this classification scenario. Then, we will present how to address this problem, enumerating diverse approaches that
can be applied to ease the discrimination of the minority (positive) and majority (negative) classes. Finally, we will discuss
how to evaluate the performance of the results in this situation.
2.1. The problem of imbalanced datasets

The main property of this type of classification problem (in a binary context) is that the examples of one class outnumber
the examples of the other one [11,38]. The minority classes are usually the most important concepts to be learnt, since they
might be associated with exceptional and significant cases [42] or because the data acquisition of these examples is costly

http://www.keel.es/dataset.php


V. López et al. / Information Sciences 257 (2014) 1–13 3
[44]. Since most of the standard learning algorithms consider a balanced training set, this situation may cause the obtention
of suboptimal classification models, i.e. a good coverage of the majority examples whereas the minority ones are misclassi-
fied more frequently [21,38].

Traditionally, the Imbalance Ratio (IR), i.e. the ratio between the majority and minority class examples [32], is the main
hint to identify a set of problems which need to be addressed in a special way. Additionally, other data intrinsic character-
istics that are related to this concept may include the overlapping between classes [26], lack of representative data [41],
small disjuncts [33,43], dataset shift [29] and other issues which have interdependent effects with data distribution
(imbalance).

The hitch here is that most learning algorithms aim to obtain a model with a high prediction accuracy and a good
generalization capability. However, this inductive bias towards such a model poses a serious challenge to the classification
of imbalanced data [38]. First, if the search process is guided by the standard accuracy rate, it benefits the covering of the
majority examples; second, classification rules that predict the positive class are often highly specialized and thus their
coverage is very low, hence they are discarded in favour of more general rules, i.e. those that predict the negative class.
Furthermore, it is not easy to distinguish between noisy examples and positive class examples and they can be completely
ignored by the classifier.
2.2. Addressing the imbalanced problem: preprocessing and cost-sensitive learning

A large number of approaches have been proposed to deal with the class imbalance problem [28], which can be catego-
rized in three groups:

1. Data level solutions: the objective consists in rebalancing the class distribution by sampling the data space to diminish
the effect caused by class imbalance, acting as an external approach [6,10,39].

2. Algorithmic level solutions: these solutions try to adapt several classification algorithms to reinforce the learning towards
the positive class. Therefore, they can be defined as internal approaches that create new algorithms or modify existing
ones to take the class imbalance problem into consideration [5,49].

3. Cost-sensitive solutions: this type of solutions incorporate approaches at the data level, at the algorithmic level, or at both
levels jointly, considering higher costs for the misclassification of examples of the positive class with respect to the neg-
ative class, and therefore, trying to minimize higher cost errors [18,40,50].

The advantage of the data level solutions is that they are more versatile, since their use is independent of the classifier
selected. Furthermore, we may preprocess all datasets before-hand in order to use them to train different classifiers. In this
manner, we only need to prepare the data once. Furthermore, previous analysis on preprocessing methods with several clas-
sifiers have shown the goodness of the oversampling techniques [6].

The simplest approach, random oversampling, makes exact copies of existing instances, and therefore several authors
agree that this method can increase the likelihood of occurring overfitting [6]. According to the previous fact, more sophis-
ticated methods have been proposed based on the generation of synthetic samples. Among them, the ‘‘Synthetic Minority
Over-sampling TEchnique’’ (SMOTE) [10] algorithm, whose main idea is to form new positive class examples by interpolating
between several positive class examples that lie together, has become one of the most significant approaches in this area.

The positive class is over-sampled by taking each minority class sample and introducing synthetic examples along the
line segments joining any/all of the k minority class nearest neighbours. Depending upon the amount of over-sampling re-
quired, neighbours from the k nearest neighbours are randomly chosen. This process is illustrated in Fig. 1, where xi is the
selected point, xi1 to xi4 are some selected nearest neighbours and r1 to r4 the synthetic data points created by the random-
ised interpolation.

Synthetic samples are generated in the following way: take the difference between the feature vector (sample) under con-
sideration and its nearest neighbour. Multiply this difference by a random number between 0 and 1, and add it to the feature
vector under consideration. This causes the selection of a random point along the line segment between two specific fea-
tures. This approach effectively forces the decision region of the positive class to become more general.
Fig. 1. An illustration of how to create the synthetic data points in the SMOTE algorithm.



Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)
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2.3. Evaluation in imbalanced domains

The evaluation criteria is a key factor in both assessing the classification performance and guiding the classifier modelling.
In a two-class problem, the confusion matrix (shown in Table 1) records the results of correctly and incorrectly recognized
examples of each class.

Traditionally, accuracy rate (Eq. (1)) has been the most commonly used empirical measure. However, in the framework of
imbalanced datasets, accuracy is no longer a proper measure, since it does not distinguish between the number of correctly
classified examples of different classes. Hence, it may lead to erroneous conclusions, i.e., a classifier achieving an accuracy of
90% in a dataset with an IR value of 9, is not accurate if it classifies all examples as negatives.
Fig. 2.
which i
Acc ¼ TP þ TN
TP þ FN þ FP þ TN

ð1Þ
In imbalanced domains, the evaluation of the classifiers’ performance must be carried out using specific metrics to take into
account the class distribution. Specifically, a well-known approach to produce an evaluation criteria in an imbalanced sce-
nario is to use the Receiver Operating Characteristic (ROC) graphic [7]. This graphic allows to visualize the trade-off between
the benefits (TPrate) and costs (FPrate), thus it evidences that any classifier cannot increase the number of true positives with-
out also increasing the false positives. The Area Under the ROC Curve (AUC) [22] corresponds to the probability of correctly
identifying which one of the two stimuli is noise and which one is signal plus noise. AUC provides a single measure of a clas-
sifier’s performance for evaluating which model is better on average. Fig. 2 shows how to build the ROC space plotting on a
two-dimensional chart the TPrate (Y-axis) against the FPrate (X-axis). Points in (0,0) and (1,1) are trivial classifiers where the
predicted class is always the negative and positive respectively. On the contrary, (0,1) point represents the perfect classifi-
cation. The AUC measure is computed just by obtaining the area of the graphic:
AUC ¼ 1þ TPrate � FPrate

2
ð2Þ
3. Classifier evaluation techniques and the issue of dataset shift

As stated in the introduction of this work, the estimation of the performance of a classifier, via partitioning in training and
test folds, is a necessary procedure in order to validate the results for a given experiment. However, the way this task is
developed has a direct influence in the analysis of the obtained models. Specifically, the issue of dataset shift can occur when
the distribution of the samples in training and test is quite different between them, leading to ‘‘overfitting’’.
False Positive Rate
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In this section, we describe dataset shift in order to understand the nature of the problem we are dealing with. Next, we
recall the standard and well-known SCV technique, and we identify its handicap for classification with imbalanced data. Fi-
nally, we present a recent methodology to alleviate this situation by a better organization of the instances among the dif-
ferent folds.
3.1. Dataset shift

The problem of dataset shift [2,8,36] is defined as the case where training and test data follow different distributions. This
is a common problem that can affect all kind of classification problems, and it often appears due to sample selection bias
issues. A mild degree of dataset shift is present in most real-world problems, but general classifiers are often capable of han-
dling it without a severe performance loss.

There are three potential types of dataset shift:

1. Prior Probability Shift: It happens when the class distribution is different between the training and test sets [37]. In the
most extreme example, the training set would not have a single example of a class, leading to a degenerate classifier.
The problems caused by this kind of shift have already been studied, and they are commonly prevented by applying a
SCV scheme [46].

2. Covariate Shift: In this case, it is the input attribute values that have different distributions between the training and test
sets [36]. We focus on the impact of this type of shift for classification problems with imbalanced data.

3. Concept Shift: We refer to this problem when the relationship between the input and class variables changes [2,47], which
presents the hardest challenge among the different types of dataset shift. In the specialized literature it is usually referred
to as ‘‘Concept Drift’’ [27,45].

The dataset shift issue is specially relevant when dealing with imbalanced classification, because in highly imbalanced
domains, the positive class is particularly sensitive to singular classification errors, due to the typically low number of exam-
ples it presents [29]. In the most extreme cases, a single misclassified example of the positive class can create a significant
drop in performance.

For clarity, Figs. 3 and 4 present two examples of the influence of dataset shift in imbalanced classification. In the first
case (Fig. 3), it is easy to see a separation between classes in the training set that carries over perfectly to the test set. How-
ever, in the second case (Fig. 4) it must be noted how some positive class examples in test are at the bottom and rightmost
areas where there were not represented in the training set, leading to a gap between the training and test performance.
These problems are represented in a two-dimensional space by means of a linear transformation of the inputs variables fol-
lowing the technique given by [29].
3.2. Cross-validation for classifier evaluation: distribution optimally balanced SCV

Cross-validation is a technique used for assessing how a classifier will perform when classifying new instances of the task
at hand. One iteration of cross-validation involves partitioning a sample of data into two complementary subsets: training
the classifier on one subset (called the training set) and testing its performance on the other subset (test set).

In k-fold cross-validation, the original sample is randomly partitioned into k subsamples. Of the k subsamples, a single
subsample is retained as the validation data for testing the classifier, and the remaining k � 1 subsamples are used as train-
ing data. The cross-validation process is then repeated k times, with each of the k subsamples used exactly once as the test
data. The k results from the folds are then averaged to produce a single performance estimation.

The way the subsamples are assigned to each fold determines the impact of the final performance estimation in the val-
idation stage. The most straightforward procedure is known as SCV, which works as follows: it counts how many samples of
each class are there in the dataset, and distributes them evenly on the folds, so that each fold contains the same number of
examples of each class. This avoids prior probability shift, because with an equal distribution class-wise on each fold, train-
ing and test set will have the same class distribution. However, this method does not take into account the covariates of the
samples, so it can potentially generate covariate shift.

According to this fact, we consider a more sophisticated technique, known as DOB–SCV [31], which adds an extra consid-
eration to the partitioning strategy as an attempt to alleviate the problem of covariate shift on top of preventing prior
probability shift. The idea is that by assigning close-by examples to different folds, each fold will end up with enough rep-
resentatives of every region, thus avoiding covariate shift.

This method is based on the Distribution-balanced SCV [52] and its pseudo-code is depicted in Algorithm 1. It picks a ran-
dom unassigned example, and then finds its k � 1 nearest unassigned neighbours of the same class. Once it has found them,
it assigns each of those examples to a different fold. The process is repeated until there are no more examples of that class
(when it gets to the last fold, it cycles and continues with the first one again). The whole process is repeated for each class.



(a) Training data. AUC = .9043 (b) Test data. AUC = 1.000

Fig. 3. Example of good behaviour (no dataset shift) in imbalanced domains: ecoli4 dataset, 5th partition.

(a) Training data. AUC = 1.000 (b) Test data. AUC = .8750

Fig. 4. Example of bad behaviour caused by dataset shift in imbalanced domains: ecoli4 dataset, 1st partition.
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Algorithm 1. DOB–SCV partitioning method

for each class cj 2 C do
while count (cj) > 0 do

e0 randomly select an example of class cj from D
ei ith closest example to e0 of class cj from D (i = 1, . . . , k � 1)
Fi Fi

S
ei(i = 0, . . . , k � 1)

D Dnei(i = 0, . . . , k � 1)
end while

end for
4. Experimental framework

In this section we first provide details of the real-world binary-class imbalanced problems chosen for the experiments
(Section 4.1). Then, we will describe the learning algorithms selected for this study and their configuration parameters (Sec-
tion 4.2). Finally, we present the statistical tests applied to compare the results obtained with the different classifiers
(Section 4.3).

4.1. Benchmark data

There is no consensus in the research community on what threshold must be set up for a given dataset to suffer from the
imbalance problem. In this paper, we consider a dataset to be imbalanced when the positive class has a distribution of exam-
ples below 40% of the number of instances that belong to the majority class, that is, if the ratio between the examples of the



Table 2
Summary of imbalanced datasets used.

Name #Ex. #Atts. IR Name #Ex. #Atts. IR

Glass1 214 9 1.82 Glass04vs5 92 9 9.22
Ecoli0vs1 220 7 1.86 Ecoli0346vs5 205 7 9.25
Wisconsin 683 9 1.86 Ecoli0347vs56 257 7 9.28
Pima 768 8 1.90 Yeast05679vs4 528 8 9.35
Iris0 150 4 2.00 Ecoli067vs5 220 6 10.00
Glass0 214 9 2.06 Vowel0 988 13 10.10
Yeast1 1484 8 2.46 Glass016vs2 192 9 10.29
Vehicle1 846 18 2.52 Glass2 214 9 10.39
Vehicle2 846 18 2.52 Ecoli0147vs2356 336 7 10.59
Vehicle3 846 18 2.52 Led7digit02456789vs1 443 7 10.97
Haberman 306 3 2.68 Glass06vs5 108 9 11.00
Glass0123vs456 214 9 3.19 Ecoli01vs5 240 6 11.00
Vehicle0 846 18 3.23 Glass0146vs2 205 9 11.06
Ecoli1 336 7 3.36 Ecoli0147vs56 332 6 12.28
New-thyroid2 215 5 4.92 Cleveland0vs4 177 13 12.62
New-thyroid1 215 5 5.14 Ecoli0146vs5 280 6 13.00
Ecoli2 336 7 5.46 Ecoli4 336 7 13.84
Segment0 2308 19 6.01 Yeast1vs7 459 8 13.87
Glass6 214 9 6.38 Shuttle0vs4 1829 9 13.87
Yeast3 1484 8 8.11 Glass4 214 9 15.47
Ecoli3 336 7 8.19 Page-blocks13vs2 472 10 15.85
Page-blocks0 5472 10 8.77 Abalone9vs18 731 8 16.68
Ecoli034vs5 200 7 9.00 Glass016vs5 184 9 19.44
Yeast2vs4 514 8 9.08 Shuttle2vs4 129 9 20.50
Ecoli067vs35 222 7 9.09 Yeast1458vs7 693 8 22.10
Ecoli0234vs5 202 7 9.10 Glass5 214 9 22.81
Glass015vs2 172 9 9.12 Yeast2vs8 482 8 23.10
Yeast0359vs78 506 8 9.12 Yeast4 1484 8 28.41
Yeast02579vs368 1004 8 9.14 Yeast1289vs7 947 8 30.56
Yeast0256vs3789 1004 8 9.14 Yeast5 1484 8 32.78
Ecoli046vs5 203 6 9.15 Ecoli0137vs26 281 7 39.15
Ecoli01vs235 244 7 9.17 Yeast6 1484 8 39.15
Ecoli0267vs35 224 7 9.18 Abalone19 4174 8 128.87
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majority and minority class is higher than 1.5. The data used in the study are summarized in Table 2, where we denote the
number of examples (#Ex.), number of attributes (#Atts.) and IR. This table is in ascending order according to the IR.

As pointed out along this paper, the estimates of the AUC measure are obtained by means of a standard SCV and the DOB–
SCV. The number of folds selected in both cases is 5. This value is set up with the aim of having enough positive class in-
stances in the different folds, hence avoiding additional problems in the data distribution, especially for highly imbalanced
datasets. Furthermore, we must point out that the original dataset partitions with 5-fold-cross-validation employed in this
paper are available for download at the KEEL dataset repository [3] so that any interested researcher can use the same data
for comparison.

4.2. Algorithms and parameters

In order to check the robustness of the DOB–SCV strategy, we have make use of several well-known classifiers from dif-
ferent Machine Learning paradigms: the C4.5 Decision Tree [34], the Chi et al. algorithm [13] as FRBCS [24], the well known
k-NN algorithm [16] as instance-based learning method [1], and SVMs with both the Support Vector Machines with SMO
optimization [15] and the Positive Definite Fuzzy Classifier (PDFC) [12]. Specifically, we have selected the following ap-
proaches as they are considered to be baseline algorithms in the field of Data Mining and they cover the widest used par-
adigms in classification. In this way, we can study the validity of our proposal within different types of classifiers, thus
being able to generalize our extracted conclusions.

Next, we detail the parameter values for the different learning algorithms selected in this study, which have been set con-
sidering the recommendation of the corresponding authors:

1. C4.5
For C4.5 we have set a confidence level of 0.25, the minimum number of item-sets per leaf was set to 2 and the application
of pruning was used to obtain the final tree.

2. Chi et al.
We will apply a configuration consisting in product T-norm as conjunction operator, together with the Penalized Cer-
tainty Factor approach [25] for the rule weight, and winning rule as Fuzzy Reasoning Method [14]. Furthermore, we have
selected the use of 5 labels per variable.
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3. k-NN
In this case we have selected 1 neighbour for determining the output class, applying the euclidean distance metric.

4. SMO
The SMO algorithm was run using polynomial reference functions, with a value of 1 in the exponent of each kernel func-
tion and a penalty parameter of the error term of 1.0.

5. PDFC
The FRBCS part of this method applies a product T-norm as the fuzzy conjunction operator, addition for fuzzy rule aggre-
gation, and centre of area defuzzification. For the SVM part we have chosen Gaussian functions for the kernels, with an
internal parameter of 0.25 and the weight of the classification error set to 100.0.

Regarding the SMOTE preprocessing technique, we will consider the 5-nearest neighbours of the positive class to generate
the synthetic samples, and balancing both classes to the 50% distribution.

We must also point out that all these algorithms are available within the KEEL software tool [4].
4.3. Statistical tests for performance comparison

The goodness of a given approach cannot be only measured in terms of the improvement for the mean performance. Sig-
nificant differences must be found among the different algorithms for concluding the superior behaviour of the one that
achieves the highest average result.

For this reason, in this paper we use the hypothesis testing techniques to provide statistical support for the analysis of the
results [19,35]. Specifically, we will use non-parametric tests, due to the fact that the initial conditions that guarantee the
reliability of the parametric tests may not be satisfied, causing the statistical analysis to lose credibility with these type
of tests [17].

We apply the Wilcoxon signed-rank test [35] as a non-parametric statistical procedure for performing pairwise compar-
isons between two algorithms, as the analogous of the paired t-test. This procedure computes the differences between the
performance scores of the two classifiers on ith out of Nds datasets. The differences are ranked according to their absolute
values, from smallest to largest, and average ranks are assigned in case of ties. We call R+ the sum of ranks for the datasets
on which the second algorithm outperformed the first, and R� the sum of ranks for the opposite. Let T be the smallest of the
sums, T = min(R+,R�). If T is less than or equal to the value of the distribution of Wilcoxon for Nds degrees of freedom
(Table B.12 in [51]), the null hypothesis of equality of means is rejected.

This statistical test allows us to know whether a hypothesis of comparison of means could be rejected at a specified level
of significance a. It is also very interesting to compute the p-value associated to each comparison, which represents the low-
est level of significance of a hypothesis that results in a rejection. In this manner, we can know whether two algorithms are
significantly different and how different they are.

Non-parametrical tests are suggested in the studies presented in [17,19,20], where its use in the field of machine learning
is highly recommended. Any interested reader can find additional information on the Website http://sci2s.ugr.es/sicidm/.
5. Experimental study

This section is devoted to identify the possible differences regarding the estimation of the performance with the standard
SCV and the suggested DOB–SCV for imbalanced datasets.

Table 3 shows the average results for the five algorithms selected for our study, namely C4.5, FRBCS (Chi et al.), 1-NN,
SMO and PDFC, grouped with respect to the IR. We must recall that, in order to address imbalance, these results are com-
puted using SMOTE as preprocessing technique.

For each classification method, three values are given: first the average AUC performance together with its standard var-
iation obtained in the test partitions for the SCV technique, then the average performance for DOB–SCV, and finally the rel-
ative difference between both values, i.e. AUCDOB�SCV�AUCSCV

AUCSCV
. In this manner, if the value is positive it means that the estimation of

the performance for DOB–SCV is more optimistic than SCV; if the value is negative it refers to the contrary case; and the
Table 3
Average test results with AUC metric and percentage differences for the SCV and DOB–SCV techniques.

Algorithm IR < 9 IR > 9 All

SCV DOB–SCV % Diff. SCV DOB–SCV % Diff. SCV DOB–SCV % Diff.

C4.5 .8597 ± .0357 .8698 ± .0393 1.28 .8133 ± .0844 .8309 ± .0751 2.83 .8288 ± .0681 .8439 ± .0632 2.32
Chi .8151 ± .0352 .8187 ± .0380 0.51 .7698 ± .1041 .7781 ± .0909 1.24 .7849 ± .0811 .7916 ± .0733 1.00
k-NN .8478 ± .0342 .8616 ± .0340 1.96 .8272 ± .0937 .8395 ± .0855 1.74 .8341 ± .0739 .8468 ± .0683 1.81
SMO .8573 ± .0317 .8644 ± .0253 0.96 .8425 ± .0695 .8427 ± .0606 0.23 .8474 ± .0569 .8500 ± .0488 0.47
PDFC .8877 ± .0293 .8901 ± .0263 0.34 .8608 ± .0819 .8672 ± .0708 0.86 .8698 ± .0644 .8749 ± .0560 0.69

http://sci2s.ugr.es/sicidm/


Table 4
Detailed test results with AUC metric and percentage differences for the SCV and DOB–SCV techniques. Values are grouped by classification algorithm.

Dataset IR C4.5 Chi k-NN SMO PDFC

SCV DOB–SCV % Diff. SCV DOB–SCV % Diff. SCV DOB–SCV % Diff. SCV DOB–SCV % Diff. SCV DOB–SCV % Diff.

Glass1 1.82 .7577 ± .0379 .7416 ± .0413 �2.12 .6788 ± .0663 .6567 ± .0670 �3.26 .7738 ± .0561 .8000 ± .0454 3.38 .5692 ± .0676 .6091 ± .0133 7.01 .7072 ± .0259 .7303 ± .0215 3.26

Ecoli0vs1 1.86 .9761 ± .0190 .9806 ± .0178 0.46 .9570 ± .0498 .9516 ± .0320 �0.57 .9626 ± .0302 .9704 ± .0129 0.80 .9796 ± .0219 .9808 ± .0175 0.12 .9831 ± .0167 .9841 ± .0156 0.10

Wisconsin 1.86 .9545 ± .0199 .9585 ± .0116 0.42 .5734 ± .0215 .5699 ± .0284 �0.62 .9624 ± .0177 .9655 ± .0118 0.33 .9706 ± .0103 .9728 ± .0061 0.23 .9568 ± .0051 .9566 ± .0146 �0.01

Pima 1.90 .7145 ± .0388 .7451 ± .0366 4.27 .6714 ± .0251 .7010 ± .0545 4.41 .6808 ± .0505 .6940 ± .0432 1.93 .7412 ± .0397 .7424 ± .0240 0.16 .7508 ± .0351 .7482 ± .0515 �0.35

Iris0 2.00 .9900 ± .0224 .9900 ± .0224 0.00 1.0000 ± .0000 1.0000 ± .0000 0.00 1.0000 ± .0000 1.0000 ± .0000 0.00 1.0000 ± .0000 1.0000 ± .0000 0.00 1.0000 ± .0000 1.0000 ± .0000 0.00

Glass0 2.06 .7856 ± .0234 .7709 ± .1189 �1.87 .6826 ± .0223 .6865 ± .0333 0.56 .8595 ± .0598 .8171 ± .0768 �4.93 .7117 ± .0298 .7183 ± .0123 0.93 .7576 ± .0821 .7722 ± .0650 1.92

Yeast1 2.46 .7113 ± .0295 .7117 ± .0424 0.05 .6994 ± .0142 .6974 ± .0374 �0.28 .6533 ± .0318 .6596 ± .0121 0.97 .7038 ± .0273 .7146 ± .0372 1.54 .7152 ± .0347 .7176 ± .0179 0.34

Vehicle1 2.52 .7468 ± .0125 .7222 ± .0451 �3.30 .6348 ± .0185 .6858 ± .0324 8.04 .6323 ± .0204 .6862 ± .0395 8.52 .7470 ± .0254 .7588 ± .0245 1.59 .8732 ± .0193 .8598 ± .0180 �1.53

Vehicle2 2.52 .9476 ± .0160 .9547 ± .0174 0.76 .8735 ± .0312 .8648 ± .0166 �1.00 .9539 ± .0202 .9299 ± .0149 �2.52 .9287 ± .0103 .9247 ± .0202�0.42 .9811 ± .0074 .9806 ± .0097 �0.06

Vehicle3 2.52 .7015 ± .0281 .7290 ± .0460 3.92 .7212 ± .0123 .6946 ± .0225 �3.69 .6835 ± .0235 .6562 ± .0642 �3.99 .7282 ± .0376 .7376 ± .0370 1.30 .8401 ± .0152 .8329 ± .0237 �0.85

Haberman 2.68 .6309 ± .0407 .6521 ± .0227 3.37 .6185 ± .0266 .6123 ± .0935 �0.99 .5394 ± .0525 .6096 ± .0869 13.01 .6161 ± .0612 .6199 ± .0460 0.61 .6120 ± .0587 .6256 ± .0588 2.23

Glass0123vs456 3.19 .8832 ± .0605 .9256 ± .0363 4.80 .8640 ± .0140 .8662 ± .0655 0.25 .9224 ± .0154 .9395 ± .0393 1.85 .8819 ± .0714 .9173 ± .0331 4.02 .9292 ± .0512 .9374 ± .0386 0.88

Vehicle0 3.23 .9143 ± .0237 .9465 ± .0073 3.52 .8495 ± .0160 .8697 ± .0209 2.38 .9106 ± .0191 .9301 ± .0245 2.14 .9562 ± .0159 .9587 ± .0128 0.26 .9764 ± .0095 .9813 ± .0065 0.50

Ecoli1 3.36 .9162 ± .0485 .8661 ± .0358 �5.47 .8791 ± .0487 .8793 ± .0190 0.02 .8298 ± .0783 .8934 ± .0285 7.66 .8933 ± .0452 .8931 ± .0133�0.03 .8967 ± .0546 .8854 ± .0153 �1.26

New-thyroid2 4.92 .9631 ± .0456 .9833 ± .0181 2.10 .9659 ± .0612 .9746 ± .0275 0.90 .9774 ± .0279 .9690 ± .0325 �0.85 .9774 ± .0296 .9944 ± .0076 1.75 .9917 ± .0076 .9917 ± .0124 0.00

New-thyroid1 5.14 .9802 ± .0371 .9690 ± .0473 �1.13 .9548 ± .0859 .9603 ± .0664 0.58 .9774 ± .0279 .9806 ± .0124 0.32 .9861 ± .0170 .9889 ± .0152 0.28 .9944 ± .0076 .9917 ± .0124 �0.28

Ecoli2 5.46 .8921 ± .0715 .8834 ± .0500 �0.97 .9170 ± .0490 .9061 ± .0400 �1.19 .9343 ± .0505 .9272 ± .0414 �0.77 .9085 ± .0469 .9046 ± .0427�0.43 .9381 ± .0419 .9311 ± .0405 �0.75

Segment0 6.01 .9927 ± .0060 .9912 ± .0076 �0.15 .9590 ± .0121 .9649 ± .0066 0.61 .9949 ± .0066 .9934 ± .0038 �0.15 .9917 ± .0090 .9917 ± .0054 0.00 .9960 ± .0033 .9990 ± .0017 0.30

Glass6 6.38 .8450 ± .0750 .8896 ± .0839 5.28 .7969 ± .0679 .8396 ± .0834 5.36 .8686 ± .0867 .9365 ± .0664 7.82 .9057 ± .0552 .9365 ± .0719 3.40 .8938 ± .0813 .9176 ± .0714 2.66

Yeast3 8.11 .8869 ± .0344 .9086 ± .0363 2.45 .8942 ± .0337 .8881 ± .0281 �0.68 .8607 ± .0134 .8693 ± .0297 1.00 .9040 ± .0128 .9003 ± .0314�0.41 .9224 ± .0213 .9301 ± .0246 0.83

Ecoli3 8.19 .7755 ± .0787 .8677 ± .1067 11.90 .8665 ± .0801 .8681 ± .0423 0.19 .7777 ± .0482 .8139 ± .0469 4.65 .8874 ± .0418 .8758 ± .0678�1.31 .8798 ± .0554 .8797 ± .0462 �0.01

Page-blocks0 8.77 .9484 ± .0153 .9472 ± .0140 �0.12 .8744 ± .0185 .8752 ± .0189 0.09 .8953 ± .0155 .9135 ± .0147 2.03 .8729 ± .0215 .8774 ± .0169 0.52 .9335 ± .0101 .9300 ± .0122 �0.37

Ecoli034vs5 9.00 .8583 ± .0806 .8694 ± .1118 1.29 .8194 ± .1343 .8222 ± .1055 0.34 .8472 ± .1361 .8639 ± .1323 1.97 .8944 ± .1037 .9000 ± .0669 0.62 .8833 ± .1139 .8889 ± .1080 0.63

Yeast2vs4 9.08 .8620 ± .0589 .8716 ± .0358 1.11 .8607 ± .0492 .8727 ± .0282 1.39 .8807 ± .0655 .8905 ± .0504 1.11 .8863 ± .0287 .8963 ± .0244 1.13 .9154 ± .0608 .9201 ± .0344 0.51

Ecoli067vs35 9.09 .8125 ± .2097 .8225 ± .0945 1.23 .7925 ± .1660 .7850 ± .1084 �0.95 .8625 ± .1495 .8675 ± .1037 0.58 .8550 ± .1509 .8500 ± .0824�0.58 .8650 ± .1687 .8800 ± .0873 1.73

Ecoli0234vs5 9.10 .8974 ± .1051 .8528 ± .0871 �4.97 .8114 ± .1577 .8725 ± .1043 7.53 .8530 ± .1261 .8808 ± .1102 3.26 .8946 ± .1109 .9029 ± .0972 0.92 .9056 ± .1135 .8862 ± .0964 �2.15

Glass015vs2 9.12 .7444 ± .1152 .6411 ± .0694 �13.87 .5583 ± .0848 .5126 ± .1752 �8.18 .6573 ± .1287 .6290 ± .1018 �4.29 .5344 ± .0400 .5737 ± .0968 7.34 .8043 ± .1182 .7793 ± .1021 �3.11

Yeast0359vs78 9.12 .7222 ± .0537 .7022 ± .0874 �2.77 .7040 ± .0631 .7063 ± .0527 0.32 .7543 ± .0384 .7188 ± .0856 �4.72 .7428 ± .0415 .7495 ± .0635 0.90 .7170 ± .0377 .7028 ± .0786 �1.99

Yeast02579vs368 9.14 .9171 ± .0164 .9044 ± .0325 �1.39 .8871 ± .0380 .8813 ± .0421 �0.65 .9044 ± .0282 .8927 ± .0493 �1.28 .9035 ± .0366 .9027 ± .0336�0.09 .9021 ± .0319 .9037 ± .0395 0.19

Yeast0256vs3789 9.14 .7543 ± .0242 .7771 ± .0585 3.02 .7798 ± .0763 .7837 ± .0233 0.49 .7807 ± .0556 .8068 ± .0475 3.33 .7940 ± .0510 .8095 ± .0376 1.96 .8189 ± .0528 .8142 ± .0274 �0.58

Ecoli046vs5 9.15 .8729 ± .0993 .8342 ± .1094 �4.44 .8394 ± .1434 .8533 ± .1645 1.65 .8642 ± .1427 .8918 ± .1073 3.20 .8979 ± .1086 .8978 ± .1092�0.01 .8507 ± .0926 .9086 ± .1061 6.81

Ecoli01vs235 9.17 .8041 ± .1660 .8377 ± .1359 4.18 .7441 ± .0805 .8209 ± .0691 1.32 .8286 ± .1507 .8850 ± .1069 6.80 .8577 ± .0923 .8764 ± .0838 2.17 .8868 ± .1512 .9214 ± .0720 3.90

Ecoli0267vs35 9.18 .7704 ± .1082 .8606 ± .0869 11.71 .7753 ± .0752 .7881 ± .1398 1.65 .8976 ± .0985 .8928 ± .0918 �0.53 .8731 ± .0776 .8730 ± .0840�0.01 .8426 ± .1085 .8804 ± .0533 4.49

Glass04vs5 9.22 .9816 ± .0168 .9706 ± .0294 �1.12 .7210 ± .1989 .7224 ± .1422 0.20 .9691 ± .0383 .9206 ± .1156 �5.01 .9629 ± .0408 .9581 ± .0155�0.50 .9636 ± .0254 .9706 ± .0416 0.72

Ecoli0346vs5 9.25 .8703 ± .0517 .8784 ± .1196 0.93 .8568 ± .0986 .8176 ± .1156 �4.57 .8838 ± .0986 .8561 ± .0933 �3.13 .8953 ± .0587 .8953 ± .0589 0.00 .9169 ± .0707 .9115 ± .0627 �0.59

Ecoli0347vs56 9.28 .8368 ± .1514 .8992 ± .0443 7.45 .8196 ± .1107 .8306 ± .1124 1.34 .8834 ± .1215 .8764 ± .0930 �0.79 .9191 ± .0888 .8905 ± .0813�3.11 .9055 ± .0838 .9185 ± .0809 1.44

Yeast05679vs4 9.35 .7682 ± .1009 .7954 ± .0827 3.55 .7989 ± .0625 .8011 ± .0481 0.28 .7753 ± .0599 .8003 ± .0597 3.23 .7885 ± .0849 .8005 ± .0182 1.51 .7900 ± .0930 .8014 ± .0392 1.45

Ecoli067vs5 1.00 .8250 ± .0862 .8875 ± .0690 7.58 .8275 ± .0958 .7875 ± .0631 �4.83 .8675 ± .0577 .8800 ± .0677 1.44 .8675 ± .0855 .8450 ± .0841�2.59 .8700 ± .0473 .8650 ± .1088 �0.57

Vowel0 1.10 .9433 ± .0483 .9750 ± .0155 3.36 .9789 ± .0183 .9933 ± .0015 1.47 1.0000 ± .0000 .9989 ± .0015 �0.11 .9566 ± .0117 .9599 ± .0092 0.35 .9989 ± .0015 .9994 ± .0012 0.06

Glass016vs2 1.29 .6367 ± .1255 .6752 ± .1478 6.06 .6002 ± .0841 .5140 ± .1171 �14.36 .6814 ± .1793 .6976 ± .1674 2.38 .5379 ± .1120 .5819 ± .0771 8.19 .7605 ± .1208 .7769 ± .1316 2.16

Glass2 1.39 .5424 ± .1401 .7498 ± .1155 38.25 .5206 ± .1120 .6241 ± .0982 19.89 .6447 ± .0987 .7331 ± .1316 13.72 .5985 ± .1570 .5989 ± .0841 0.07 .7688 ± .1486 .7789 ± .1081 1.31

Ecoli0147vs2356 1.59 .8461 ± .0453 .8426 ± .0669 �0.41 .7894 ± .0606 .8043 ± .0728 1.89 .8507 ± .0309 .8857 ± .1008 4.11 .8844 ± .0767 .8862 ± .0461 0.20 .9025 ± .0542 .8823 ± .0158 �2.23

Led7digit02456789vs1 1.97 .8832 ± .0962 .8207 ± .0995 �7.08 .8302 ± .0749 .7983 ± .0810 �3.84 .8108 ± .0333 .8652 ± .0432 6.70 .8875 ± .0531 .8248 ± .0549�7.07 .8852 ± .0923 .8611 ± .0954 �2.73

Glass06vs5 11.00 .9147 ± .1186 .9600 ± .0285 4.95 .7500 ± .2215 .7850 ± .1876 4.67 .9400 ± .1207 .9200 ± .1242 �2.13 .9439 ± .0344 .9492 ± .0260 0.56 .9745 ± .0358 .9597 ± .0133 �1.51

Ecoli01vs5 11.00 .8227 ± .1074 .8523 ± .0114 3.59 .8386 ± .1447 .8500 ± .1445 1.36 .8545 ± .1525 .8909 ± .0973 4.26 .8932 ± .0756 .8977 ± .0663 0.51 .8795 ± .1018 .9114 ± .0660 3.62

Glass0146vs2 11.06 .7564 ± .1089 .7361 ± .1509 �2.68 .5146 ± .1054 .5527 ± .1197 7.39 .6453 ± .0884 .7445 ± .1301 15.37 .6157 ± .0732 .6185 ± .0496 0.45 .8029 ± .1359 .7838 ± .0650 �2.38

Ecoli0147vs56 12.28 .8641 ± .0565 .8474 ± .0425 �1.93 .8441 ± .1129 .8458 ± .0535 0.19 .8756 ± .0622 .8740 ± .0717 �0.19 .9093 ± .0353 .8928 ± .0760�1.82 .8907 ± .0755 .9124 ± .0831 2.44
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V
.López

et
al./Inform

ation
Sciences

257
(2014)

1–
13

9



Ta
b

le
4

(c
on

ti
nu

ed
)

D
at

as
et

IR
C

4.
5

C
h

i
k-

N
N

SM
O

PD
FC

SC
V

D
O

B
–S

C
V

%
D

if
f.

SC
V

D
O

B
–S

C
V

%
D

if
f.

SC
V

D
O

B
–S

C
V

%
D

if
f.

SC
V

D
O

B
–S

C
V

%
D

if
f.

SC
V

D
O

B
–S

C
V

%
D

if
f.

C
le

ve
la

n
d0

vs
4

12
.6

2
.7

21
0

±
.1

25
9

.7
71

9
±

.1
18

0
7.

05
.1

18
8

±
.0

53
8

.1
18

8
±

.0
58

0
�

0.
08

.8
54

3
±

.1
43

0
.7

04
2

±
.0

65
2
�

17
.5

7
.9

07
6

±
.0

61
9

.9
01

0
±

.0
93

2
�

0.
72

.8
92

9
±

.0
76

5
.8

18
8

±
.1

53
8

�
8.

30

Ec
ol

i0
14

6v
s5

13
.0

0
.8

98
1

±
.0

97
5

.8
53

8
±

.0
79

7
�

4.
93

.8
48

1
±

.1
21

5
.8

71
2

±
.1

33
0

2.
72

.8
48

1
±

.1
17

1
.9

15
4

±
.1

12
0

7.
94

.8
84

6
±

.0
94

7
.8

96
2

±
.1

10
1

1.
30

.8
75

0
±

.1
08

8
.9

09
6

±
.1

12
7

3.
96

Ec
ol

i4
13

.8
4

.8
04

4
±

.1
38

8
.8

98
0

±
.0

73
2

11
.6

4
.9

23
0

±
.0

81
3

.9
15

2
±

.0
77

1
�

0.
85

.9
17

1
±

.0
68

9
.9

60
8

±
.0

52
7

4.
77

.9
48

1
±

.0
59

0
.8

99
7

±
.0

63
2
�

5.
10

.9
06

0
±

.0
72

4
.9

01
2

±
.0

69
5

�
0.

53

Y
ea

st
1v

s7
13

.8
7

.7
06

4
±

.0
67

1
.6

71
1

±
.1

02
7

�
5.

00
.6

52
4

±
.1

04
7

.6
67

1
±

.0
91

3
2.

26
.7

47
9

±
.1

27
9

.6
61

0
±

.0
74

6
�

11
.6

2
.7

69
1

±
.0

64
2

.7
47

7
±

.0
43

1
�

2.
78

.6
88

1
±

.0
52

1
.7

07
1

±
.0

83
2

2.
76

Sh
u

tt
le

0v
s4

13
.8

7
.9

99
7

±
.0

00
7

.9
99

1
±

.0
00

8
�

0.
06

.9
87

2
±

.0
11

7
.9

87
4

±
.0

28
1

0.
02

.9
96

0
±

.0
08

9
.9

95
7

±
.0

08
8
�

0.
03

.9
96

0
±

.0
08

9
.9

96
0

±
.0

08
9

0.
00

.9
96

0
±

.0
08

9
.9

96
0

±
.0

08
9

0.
00

G
la

ss
4

15
.4

7
.8

50
8

±
.0

93
5

.8
98

6
±

.1
37

6
5.

61
.8

61
8

±
.1

10
5

.8
76

2
±

.1
45

9
1.

67
.8

91
7

±
.1

16
2

.9
08

5
±

.1
49

1
1.

88
.8

92
8

±
.1

16
1

.8
71

3
±

.1
42

9
�

2.
41

.9
25

1
±

.1
05

2
.9

34
4

±
.0

78
6

1.
01

Pa
ge

-b
lo

ck
s1

3v
s4

15
.8

5
.9

95
5

±
.0

04
7

.9
56

5
±

.0
75

2
�

3.
91

.8
92

8
±

.1
06

7
.8

68
4

±
.0

81
0

�
2.

74
.9

97
7

±
.0

05
1

.9
87

6
±

.0
07

4
�

1.
01

.7
22

3
±

.1
22

6
.8

09
6

±
.0

64
8

12
.0

9
.9

75
2

±
.0

12
4

.9
74

1
±

.0
12

9
�

0.
11

A
ba

lo
n

e9
vs

18
16

.6
8

.6
20

1
±

.0
51

4
.7

85
4

±
.0

79
4

26
.6

6
.6

74
4

±
.0

98
8

.6
93

7
±

.0
93

8
2.

86
.6

82
0

±
.0

81
4

.7
45

7
±

.0
66

9
9.

34
.8

45
8

±
.0

56
4

.7
97

7
±

.0
52

4
�

5.
68

.8
96

9
±

.0
22

7
.8

37
3

±
.0

57
7

�
6.

65

G
la

ss
01

6v
s5

19
.4

4
.9

71
4

±
.0

14
3

.9
68

6
±

.0
12

0
�

0.
29

.8
48

6
±

.2
19

1
.8

51
4

±
.1

43
5

0.
34

.8
77

1
±

.2
19

1
.9

32
9

±
.1

11
8

6.
35

.9
34

3
±

.0
32

9
.9

37
1

±
.0

19
2

0.
31

.8
77

1
±

.2
27

4
.9

21
4

±
.1

22
9

5.
05

Sh
u

tt
le

2v
s4

2.
50

.9
95

8
±

.0
09

3
.9

87
7

±
.0

18
5

�
0.

82
.8

83
8

±
.2

16
0

.8
84

0
±

.2
16

1
0.

02
1.

00
00

±
.0

00
0

.9
95

8
±

.0
09

3
�

0.
42

.9
96

0
±

.0
08

9
.9

96
0

±
.0

08
9

0.
00

.9
96

0
±

.0
08

9
.9

96
0

±
.0

08
9

0.
00

Y
ea

st
14

58
vs

7
22

.1
0

.5
23

0
±

.0
17

0
.5

88
9

±
.0

62
3

12
.5

9
.5

71
3

±
.0

83
0

.6
06

1
±

.0
39

0
6.

10
.6

39
0

±
.0

77
8

.6
29

0
±

.0
62

5
�

1.
56

.6
57

0
±

.0
61

2
.6

53
9

±
.0

74
5
�

0.
46

.6
56

9
±

.0
43

9
.7

02
4

±
.0

54
8

6.
92

G
la

ss
5

22
.8

1
.8

82
9

±
.1

33
1

.9
82

9
±

.0
13

9
11

.3
3

.7
46

3
±

.2
05

2
.8

43
9

±
.1

28
1

13
.0

7
.8

82
9

±
.2

14
8

.9
23

2
±

.1
18

2
4.

56
.9

34
1

±
.0

31
8

.9
39

0
±

.0
22

8
0.

52
.8

73
2

±
.1

14
5

.9
25

6
±

.0
98

4
6.

01

Y
ea

st
2v

s8
23

.1
0

.8
06

6
±

.1
12

2
.7

49
0

±
.0

98
0

�
7.

13
.8

06
6

±
.0

69
4

.7
09

9
±

.0
56

6
�

12
.0

0
.8

05
5

±
.1

42
5

.7
50

1
±

.1
09

6
�

6.
88

.7
66

4
±

.0
96

0
.7

66
3

±
.0

49
5
�

0.
01

.7
92

4
±

.1
05

5
.7

89
2

±
.0

71
3

�
0.

41

Y
ea

st
4

28
.4

1
.7

00
4

±
.0

56
5

.7
82

3
±

.0
78

6
11

.6
9

.8
32

5
±

.0
23

9
.8

30
3

±
.0

20
9

�
0.

27
.7

24
2

±
.0

59
3

.7
66

8
±

.0
89

9
5.

88
.8

21
7

±
.0

43
0

.8
35

2
±

.0
62

9
1.

64
.8

09
0

±
.0

77
4

.8
15

5
±

.0
81

9
0.

80

Y
ea

st
12

89
vs

7
3.

56
.7

05
1

±
.0

69
7

.6
03

7
±

.0
72

4
�

14
.3

8
.6

77
0

±
.0

85
3

.7
02

7
±

.0
66

5
3.

80
.6

44
4

±
.0

71
3

.6
50

3
±

.0
87

7
0.

92
.7

21
6

±
.0

51
4

.7
22

7
±

.0
71

3
0.

15
.6

96
4

±
.0

93
8

.7
12

6
±

.0
50

6
2.

31

Y
ea

st
5

32
.7

8
.9

33
7

±
.0

40
0

.9
38

9
±

.0
26

6
0.

56
.9

37
2

±
.0

27
2

.9
46

5
±

.0
25

6
1.

00
.9

32
6

±
.0

41
3

.9
51

4
±

.0
33

3
2.

01
.9

65
6

±
.0

06
8

.9
65

3
±

.0
06

9
�

0.
04

.9
61

1
±

.0
29

0
.9

39
6

±
.0

30
2

�
2.

24

Ec
ol

i0
13

7v
s2

6
39

.1
5

.8
13

6
±

.2
17

1
.8

78
0

±
.1

21
5

7.
92

.7
91

7
±

.1
98

1
.8

59
8

±
.1

34
0

8.
60

.8
28

1
±

.2
08

7
.8

83
6

±
.1

26
3

6.
69

.8
49

0
±

.1
96

9
.8

48
9

±
.1

20
9
�

0.
01

.8
11

8
±

.1
95

7
.8

74
4

±
.1

26
6

7.
72

Y
ea

st
6

39
.1

5
.8

28
0

±
.1

27
7

.7
99

6
±

.1
19

9
�

3.
44

.8
82

0
±

.0
85

5
.8

79
6

±
.0

48
8

�
0.

27
.7

99
8

±
.1

20
0

.8
36

1
±

.1
27

4
4.

54
.8

75
1

±
.0

71
2

.8
74

4
±

.0
49

4
�

0.
08

.8
68

4
±

.0
61

0
.8

56
2

±
.0

73
0

�
1.

41

A
ba

lo
n

e1
9

12
8.

87
.5

20
3

±
.0

44
3

.5
82

7
±

.0
81

1
11

.9
9

.6
74

8
±

.1
07

7
.6

97
6

±
.0

42
4

3.
38

.5
17

6
±

.0
38

5
.5

76
3

±
.0

65
3

11
.3

4
.7

89
4

±
.0

46
3

.7
90

8
±

.0
72

9
0.

18
.6

77
7

±
.0

52
9

.7
28

0
±

.1
01

9
7.

42

A
ve

ra
ge

.8
28

8
±

.0
68

1
.8

43
9

±
.0

63
2

2.
32

.7
84

9
±

.0
81

1
.7

91
6

±
.0

73
3

1.
00

.8
34

1
±

.0
73

9
.8

46
8

±
.0

68
3

1.
81

.8
47

4
±

.0
56

9
.8

50
0

±
.0

48
8

0.
47

.8
69

8
±

.0
64

4
.8

74
9

±
.0

56
0

0.
69

10 V. López et al. / Information Sciences 257 (2014) 1–13



Table 5
Wilcoxon’s tests to compare the results with the DOB–SCV versus the standard SCV. R+ corresponds to the sum of the ranks for the DOB–SCV partitioning
approach and and R� to the original SCV partitioning.

Comparison R+ R� p-value

C4.5[DOB–SCV] vs C4.5[SCV] 1391 754 0.0371
Chi[DOB–SCV] vs Chi[SCV] 1411 734 0.0267
k-NN[DOB–SCV] vs k-NN[SCV] 1536 609 0.0024
SMO[DOB–SCV] vs SMO[SCV] 1395 816 0.0639
PDFC[DOB–SCV] vs PDFC[SCV] 1366 845 0.0955
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higher the obtained number, the most significant the selection of the validation approach is. Additionally, we show the de-
tailed test results for all datasets in Table 4.

From these tables of results we may observe that for all five algorithms, the DOB–SCV validation technique achieves a
higher estimation of the performance for most datasets, therefore being more robust for analyzing the quality of the models
learned in imbalanced data.

Furthermore, we must point out that the degree of imbalance of the dataset has a direct impact on the diverse results over
the different folds in the obtained results, i.e. the higher the IR is, the greater the differences between the standard SCV and
the DOB–SCV are. In addition to the former, the standard deviation computation supports this perception: these values for
both partitioning techniques are similar when the degree of imbalance is low; however, when the IR is higher we may ob-
serve that the standard deviation is much higher in contrast with low imbalanced datasets. Additionally, DOB–SCV has lower
standard deviation values than SCV, therefore sustaining the reduction of the gap between training and test partitions.

This issue may arise due to the fact that, the lower the number of positive instances we have in a dataset with respect to
the negative ones, the more significant is to maintain the data distribution to avoid the differences in performance between
training and test.

The characteristics of specific datasets do not pose a source of knowledge when trying to observe if there is a group of
them where DOB–SCV performs better than SCV. In general, DOB–SCV obtains a better performance for most of the algo-
rithms for each dataset, however, only few of the datasets considered are able to provide a clear trend for all the algorithms:
the cases where DOB–SCV obtains a better estimation than SCV (for instance, Abalone19 or Glass2) are more numerous than
the contrary case (Ecoli2 or Yeast2vs8) and the improvement is much greater than the loss.

When trying to find a group of data with the highest differences between DOB–SCV and SCV, it is not possible to do so
without also considering the algorithm underneath. For instance, if we try to observe where the greatest improvements or
losses are obtained for each algorithm, we realize that the datasets obtained for one algorithm are completely different from
the datasets obtained for the rest.

In order to give statistical support to the findings previously extracted, we will carry out a Wilcoxon test to compare both
validation techniques with the five classification algorithms. This analysis is shown in Table 5 where the algorithms are com-
pared by rows.

The conclusions from this test are clear, from which significant differences are found between DOB–SCV and SCV in all
cases with a low p-value. Furthermore, the higher sums of the ranks for DOB–SCV tell us about the goodness of this approach.

To summarize, we must stress that DOB–SCV is a suitable methodology for contrasting the performance of the classifi-
cation algorithms in imbalanced data. When the distribution of the classes is skewed, using standard estimation models
may lead to misleading conclusions on the quality of the prediction. The proposed use of this model addresses the handicap
of losing the generalization ability because of the way data is distributed among the different folds.
6. Concluding remarks

In this work we have proposed the use of a novel partition-based methodology, named as DOB–SCV, which aims at
obtaining a better estimation of a classifier’s performance by carrying out an heterogeneous organization of the instances
of the classes among the different folds.

We have identified this validation technique as a very suitable procedure in the framework of imbalanced datasets. It is
straightforward to realize that, in the case that one of the classes of the problem contains a fewer number of examples, and
regarding to the evaluation metrics used in this scenario, introducing covariate shift between training and test will unequiv-
ocally lead to high differences in performance in the learning and validation stages.

The stable performance estimation of DOB–SCV has been contrasted versus the classical k-fold SCV, detecting significant
differences between both techniques for several classifiers often used in imbalanced tasks such as C4.5, FRBCSs, k-NN and
SVMs. We must highlight that avoiding different data distribution inside each fold will allow researchers on imbalanced data
to concentrate their efforts on designing new learning models based only on the skewed data, rather than seeking for com-
plex solutions when trying to overcome the gaps between training and test results. Nevertheless, neither SCV nor DOB–SCV
can unequivocally guarantee to obtain the best estimate of the true error for a given problem. This can only be achieved by
having infinite data or, at least, that the input data covers the whole problem space, which is not usually the case.
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